

GREEN BUILDING FOR POLICY MAKERS

MEDFIELD STATE
HOSPITAL MASTER PLAN

Can You Find the Passive House?

Can You Find the Passive House?

Photo Credit: www.SGBUILD.com

What is Passive House?

CHARACTERISTICS

Uninterrupted building envelope

Five to six times more airtight

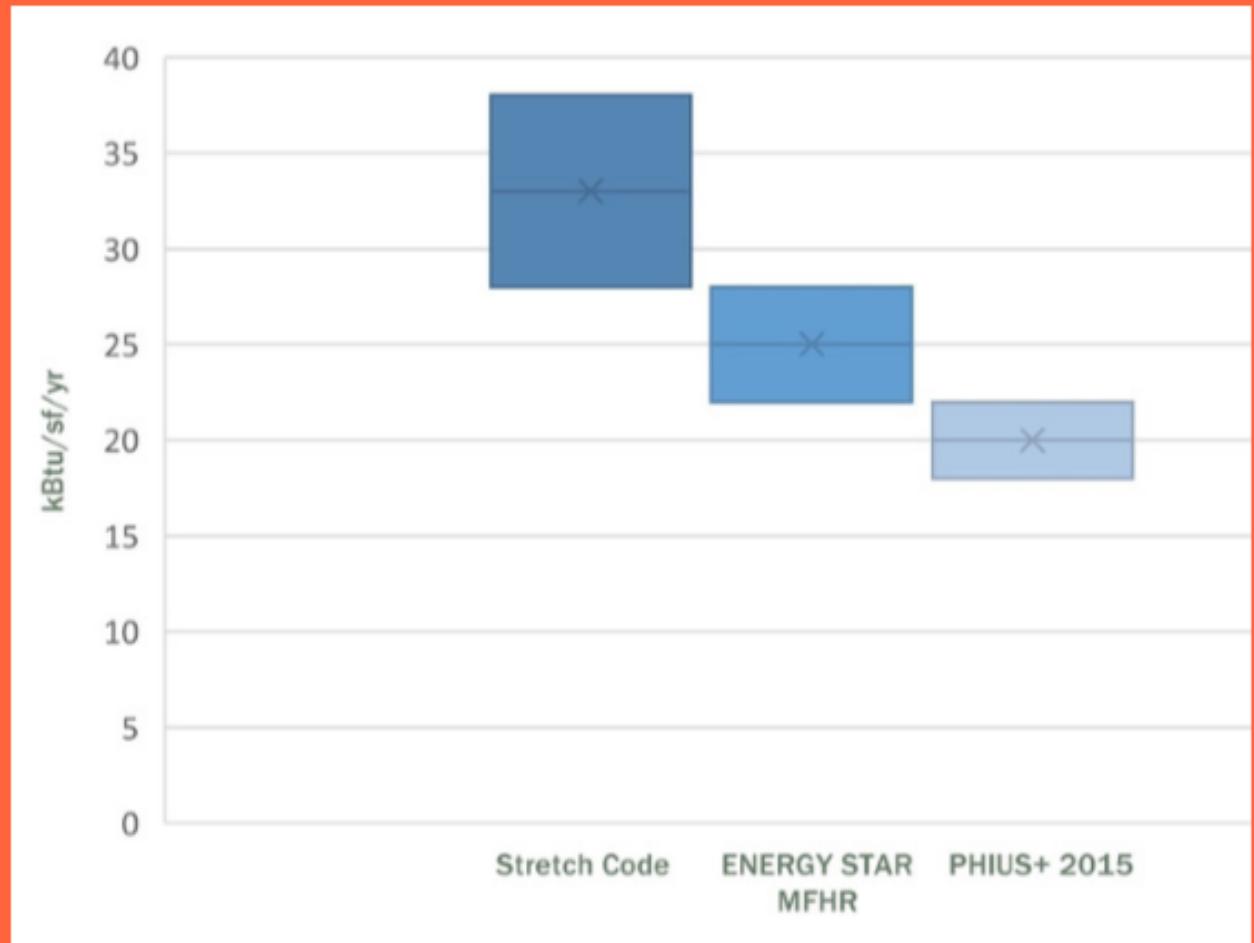
Optimized solar gain

Continuous ventilation with heat recovery

Durable construction details

Resiliency

Goal:


**90% reduction in
heating and
cooling loads
compared to a
typical* building**

*existing building stock

Measured Performance:

30-45% less carbon emissions than MA stretch code buildings

Source: New Ecology, Inc.

BENEFITS OF PASSIVE HOUSE FOR MULTIFAMILY

- Very low energy compared to code
- Improved indoor air quality
- Comfortable, temperature controlled units
- Durability of construction
- Quiet
- Ability to shelter in place

I. MINIMIZE OPERATING ENERGY: LEED VS PASSIVE

- Only 30% LEED points address energy
- Passive House has much lower energy goal and high degree of quality assurance and testing
- Good fit with new construction multi-family
- Good fit with building 10A and 10B
- MassSave incentives for multi-family new construction Passive House

Medfield State Hospital Master Plan

- New Construction Condos- 10A & 10B should require Passive House certification
- New Construction- Nursing/Memory Care
 - ✓ Potentially require Passive House certification
 - ✓ Negotiate with MassSave on incentives
- New Construction single family
 - ✓ require aggressive HERS rating- 40? or Passive House certification
 - ✓ Likely a Mass Save single family incentive by the time these are built
 - ✓ Consider requiring solar PV for each

Medfield State Hospital Master Plan

- Historic Rehab- guts with additions should have strong emphasis on envelope improvement
 - ✓ learn from Passive House rehabs
 - ✓ Go to interior on insulation
 - ✓ Buildings will be there another 100 years- this is your only shot at envelope- so make them get it right
- Historic Rehab- Passive House certification probably too expensive but we can point you to rehabs that have done it to learn from

2. NO NATURAL GAS

ELECTRIFY EVERYTHING

- Efficient Heat Pumps use electricity to heat and cool
- Electricity = Renewables
- Methane a powerful GHG- 84 times more potent than CO₂
- To achieve 2050 GHG goals must electrify most heating
- Initial install of central air source heat pump is cost comparable to gas heating plus cooling for new
- Large scale hot water is biggest challenge
- If heat pump water heaters not a good fit- consider solar hot water to minimize hot water loads

Medfield State Hospital Master Plan

Non-gas heating and cooling options

- Don't incur costs of bringing gas to the site
 - ✓ Air source heat pumps
 - ✓ Ground source heat pumps
 - ✓ Eligible for Alternative Energy Credits
 - ✓ Not sure about district heat
- Ensure historic rehabs have good engineering for heat pump retrofits
 - ✓ Good envelope improvements critical for comfort and keeping electric costs reasonable
- Push for on site and offsite solar for the site

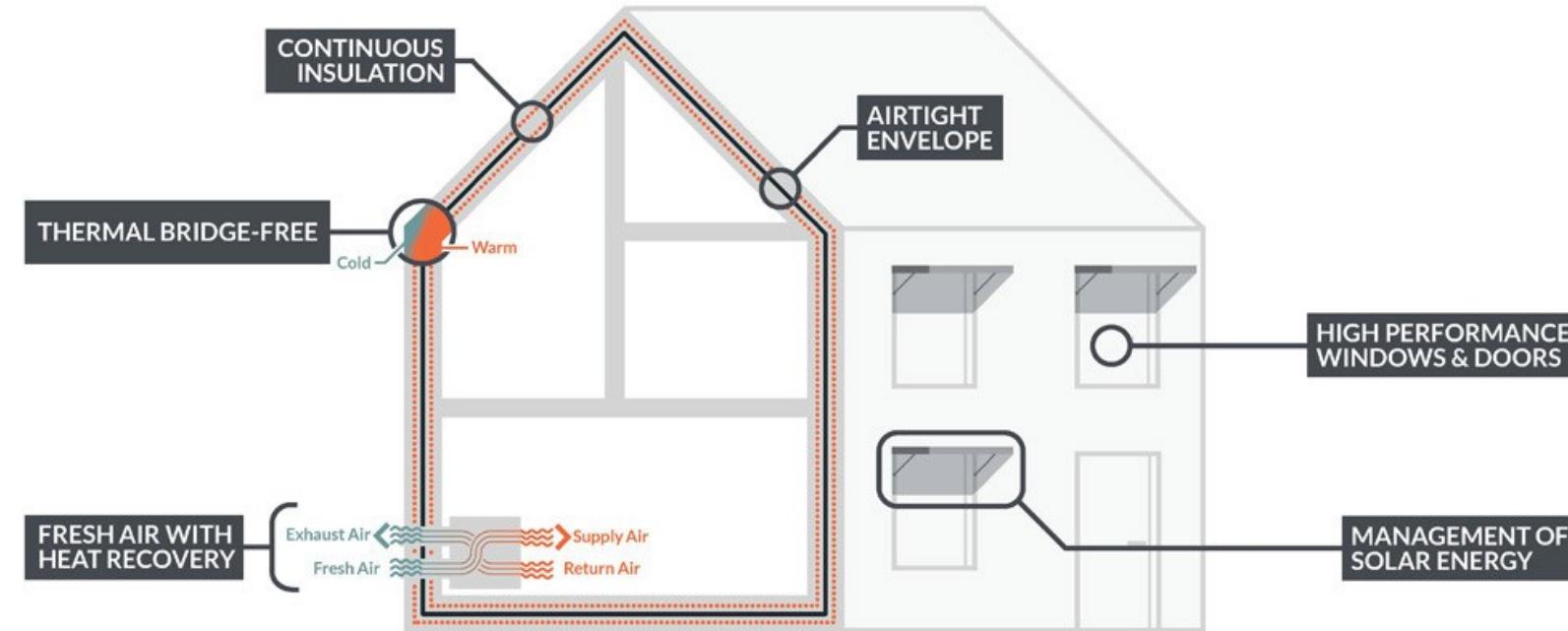
Medfield State Hospital Master Plan

Non gas hot water options

- Heat Pump Water Heaters will work for cottages and condos
- If Memory Care or other buildings need central hot water- consider solar hot water to reduce loads- make sure maintenance contract
- Solar Hot Water gets Alternative Energy Credits
- All electric mini split 8 unit with solar hot water
<https://www.centerforecotchnology.org/auburn-court-solar-hot-water-installation/>

3. MINIMIZE EMBODIED CARBON

- Carbon to make building materials can be high, low, or carbon sink
- If building uses 40% less energy still could take 15 years to work off the carbon in materials
- Require developers to calculate embodied carbon
- Use tools to consider alternatives


SOLAR

- Solar Ready not same as Installed Solar
- PV has less than 10 year payback
- Power Purchaser Agreements
- Won't ever be able to get to net zero with onsite solar for multi-family projects above 3 floors- probably not for memory care

Extra slides to potentially
help answer questions

Passive House Principles

PASSIVE HOUSE PRINCIPLES

CC BY HAMMER & HAND

REDISTRIBUTION OKAY WITH CREDIT/LINK TO HAMMERANDHAND.COM

Air Tightness Standard

MA Energy Code

3

ACH50

(air changes per hour at 50 Pascals)

Passive House*

0.6

ACH50

(air changes per hour at 50 Pascals)

*Passive House International (PHI)

Certification Options

PHIUS+ standards adjust energy requirements based on regional climate

AREAS TO FOCUS ON

INSULATION High levels of insulation in the slab, walls and roof that may far exceed building code.

AIR SEALING Minimize leaks and cracks, penetrations through walls and roofs (typically for exhaust, plumbing stacks, etc).

HVAC Mini split air to air heat pumps provide heat and cooling, or other high efficiency heating options. Often heating loads are so low that traditional HVAC systems are significantly oversized.

VENTILATION Energy recovery ventilation (ERV) or heat recovery ventilation (HRV) takes the air exhausting from kitchens and bathrooms and before sending the air out, it captures the waste heat and uses it to preheat the incoming fresh air from outside.

AREAS TO FOCUS ON

WINDOWS Windows and doors that are well insulated and well sealed (often triple glazed windows are used in PH). Casement and awning windows seal better than double hung or sliders. South and west facing windows may require shading.

COMBUSTION Use of combustion appliances (fireplaces, wood stoves, gas ranges) are typically very limited in Passive House projects, especially in multi-family.

THERMAL BREAKS Minimize areas where materials are continuous between interior and exterior.

ELM PLACE

Milton, VT

Completed: 2017

of Units: 30

Total Floor Area: 27,690 s.f.

Architect: Duncan Wisniewski Architects

General Contractor: ReArch

CHPC: Chris West

Building Type: Affordable senior housing

Roof Insulation: R70. Spray foam + fiberglass

Wall Insulation: 2x6 stud wall with fiberglass +
4" exterior polyiso

Floor/Slab Insulation: Concrete over R40 foam

Doors/Windows: U-.128 Schuco uPVC tilt/turn

Heating/Cooling: Mitsubishi Hyper Heat

Ventilation: Daikin ERU Renuware HE 1.5X

Renewable Energy: 15kW PV

EUI: 20.2 kBtu/sf/yr

Special Features: Parking under living spaces

VILLAGE CENTRE

Brewer, ME

Completed: 2016

of Units: 48

Total Floor Area: 51,778 s.f.

Architect: CWSArchitects

General Contractor: Wright-Ryan Construction

CHPC: Colin Schless

PH Consultant: Thornton Tomasetti

Building Type: Affordable housing

Roof Insulation: Polyisocyanurate foam (R-57)

Wall Insulation: 2x6 wood stud wall + 2x4 metal stud wall with spray cellulose (R-40)

Floor/Slab Insulation: 4" XPS under slab (R-20)

Doors/Windows: Unilux triple pane, U-0.18

Heating/Cooling: Electric baseboard (6 ft per unit), Natural gas boiler

Ventilation: Renewaire ERV (3:1)

Renewable Energy: Rooftop PV

GILFORD VILLAGE KNOLLS III

Gilford, NH

Completed: 2018

of Units: 24

Total Floor Area: 20,571 s.f.

Developer: Laconia Area Community Land Trust

Architect: Stewart Associates Architects LLC

General Contractor: Martini Northern

CHPC: Michael Hindle, Mike Duclos

PH Consultant: GDS Associates

Building Type: Affordable senior housing

Roof Insulation: R-75

Wall Insulation: 2x8 with blown in fiberglass

Floor/Slab Insulation: 6" EPS

Doors/Windows: Yaro Economy

Heating/Cooling: Mitsubishi Mr. Slim 8:1

Ventilation:

Renewable Energy: 104.92-kilowatt rooftop solar array

B E A C H G R E E N N O R T H

Far Rockaway, NY

Completed: 2017

of Units: 101

Total Floor Area: 93,894 s.f.

Architect: Curtis + Ginsberg Architects LLP

General Contractor: The Bluestone Organization

CHPC: Lisa White

PH Consultants: De Nardis Engineering, LLC,
Tectonic, GDSNY

Building Type: Affordable housing

Roof Insulation: Concrete + polyiso (R-40)

Wall Insulation: ICF construction (R-24)

Floor/Slab Insulation: Mineralwool + concrete
(R-28)

Doors/Windows: Rehau 4500

Heating/Cooling: LG VRF

Ventilation: RenewAire EV90

Renewable Energy: 129.5 kW PV, 10 kW
microturbine

DISTILLERY NORTH

South Boston, MA

Completed: 2017

of Units: 28

Total Floor Area: 27,840 s.f.

Developer: Second Street Associates, LLC

Architect: ICONArchitecture

General Contractor: Commodore Builders

CHPC: Mark Anstey

Building Type: Market-rate housing

Roof Insulation: Open web truss with cellulose +
2" EPS

Wall Insulation: 2x8" cellulose with 3" rockwool
exterior insulation (R-37)

Floor/Slab Insulation:

Doors/Windows: R-7 triple paned, tilt turn

Heating/Cooling: Mitsubishi air source heat
pumps in each unit; natural gas hot water

Ventilation: HRV 95% efficient

Renewable Energy: PV, near net zero

Special Features: LEED-H Midrise Platinum,
Public café, a street-level commercial space,
interior parking with EV charging stations

BAYSIDE ANCHOR

Portland, ME

Completed: 2017

of Units: 45

Total Floor Area: 38,500 s.f.

Developer: Portland Housing Authority/Avesta Housing

Architect: Kaplan Thompson Architects

General Contractor: Wright-Ryan Construction

CHPC: Jesse Thompson

Building Type: Affordable + Market-Rate Housing

Roof Insulation: Polyiso (R-50)

Wall Insulation: Double stud wall with dense pack cellulose (R-34)

Floor/Slab Insulation: 3" EPS (R-16)

Doors/Windows: R-5, triple glazed

Heating/Cooling: Electric resistance baseboard

Ventilation: Renewaire 450 ERV ECM

Renewable Energy: 50 kW PV array

Special Features: Storm water collection, Community garden

TRACY COMMUNITY HOUSING

Lebanon, NH

Completed: TBD- Summer 2019

of Units: 29

Total Floor Area: 27,000 s.f.

Developer: Twin Pines Housing

Architect: Maclay Architects

General Contractor: Estes & Gallup

CHPC: Chris West, Eco Houses of VT

Building Type: Affordable housing

Roof Insulation: R-60 11" polyiso

Wall Insulation: R-38 2x6 cellulose + 4" polyiso

Floor/Slab Insulation: R-20 5" rigid foam

Doors/Windows: U-0.22, (R-4.5) SHGC 0.41

Heating/Cooling: Mitsubishi air source heat pumps, electric hot water

Ventilation: Rooftop Daikin DPS 007A

Renewable Energy: 180 kW PV

Special Features: Net zero

